
5 P41 RR0078516 Progress - Core System R&D

connections. More recently, we have been able to restore telephone dial-out
service by upgrading our EtherTIP systems. Now users can connect to dial-
out ports on the EtherTIP from their workstation directly (e.g., Macintosh) or
from the SUN-4 to make external modem connections. Our X.25 service line
from TELENET Inc. also is attached to an X.2UEthernet gateway which
provided users immediate access to the new SUN-4 system from TELENET
(see Wide Area Networking).
Although we are still missing a number of features in the new system (e.g.,
adequate community and project directory and file management structures,
usage accounting, a WHOIS data base, and a fully-operational archiving
system), the physical aspects of transferring to the SUN-4 are nearly
complete. During this transition, the 2060 has been maintained only on a
“time & materials” basis as absolutely necessary to retain adequate access.
Numerous parts of the system have failed in the intervening 9 months,
including several memory banks, disk problems, and a backplane problem.
The system is now quite unreliable but not worth repairing as its resale value
is nearly $0. We hope to keep it running through this summer in order to
complete the file system transfer to UNIX and to tie off access to old 2060-
based software. At that time, the 2060 will be shut down permanently,
ending an important phase in the history of SUMEX-AIM and the AIM
community.

(3) The New SUN-B ased SUMElX-AIM Resource
The SUN-4/280 central server for the SUMEX-AIM resource was acquired in
1988, is configured with 32 megabytes of memory and 1.8 gigabytes of disk
storage, and runs under the UNIX operating system (see Figure 3). The
primary function of this machine is to provide, in place of the 2060, wide- and
local-area network access; electronic mail transmission/routing, reception,
and user access; community bboards; file service; and print spooling for the
AIM community. Such UNIX servers, running on modern high-performance
hardware like the SUN SPARC chip or other RISC chips, are relatively
inexpensive and fast and are easily obtainable by other groups in the AIM
community.
We also operate a complementary SUN-3/180 machine, acquired in 1987,
which is named KNIFE (KSL Network Interface and File server
Environment) and which provides additional file storage and access facilities
for the community (see Figure 4). Both SUN servers run the same version of
the SUN Operating System (SunOS 4.0), providing the expected efficiency
advantages from uniformity - the KNIFE server had been running the
earlier release 3 operating system and was only recently updated to release
4.0.
A third VAX ll/750-based file server (SAFE) is being phased out in deference
to the more cost-effective SUN systems and its disks will be reintegrated with
SUMEX-AIM and KNIFE.

51 E. H. Shortliffe

Progress - Core System R&D 5 P41 RR00785-16

These servers provide distributed computing services, including NFS
(Network File Access), to the various personal computers and workstations in
the AIM community. SUMEX-AIM is the main EMail machine and provides
individual mail services, as well as network distribution lists and bulletin
boards. KNIFE, on the other hand, is more committed to network and
distributed file service development and support. Having two such different
yet similar environments has provided good flexibility in offering various
functionalities, while easing the administration of the distributed systems.
We anticipate exploiting this duality in the coming year, specifically in the
area of file backup and archiving.

(3.1) File Access and Management
A stable, efficient mechanism for storing and organizing data is central to any
computing environment, and is one of the most challenging issues in the
move to distributed, workstation-based computing. It is necessary to provide
standard services, such as file backup, archiving, a flexible and intuitive
naming facility, and data interchange services (e.g., file transfer). Also, as
the amount of data being manipulated grows, it becomes more and more
important to have powerful tools for managing hierarchies of files.
UNIX has many of the needed facilities, e.g., backup, long names,
hierarchical directory structure, some file property attributes, data
conversion, and limited archival tools. However, while general issues of
networking, remote memory paging services, and flexible file access have
received considerable attention in both the academic and commercial
development of file servers, there has been only slow development of other
critical operational tools. For instance, the much-used file archiving system
of the DEC 2060 (sometimes called off-line cataloged storage) has no analog
service in “standard” UNIX systems. Perhaps this is the result of UNIX
having its origin in the small computer world where the number of users and
volume of data has traditionally been quite low. To ensure continued
availability of archiving services in our transition from the 2060, we have
worked on adapting a commercial system developed by UniTech to allow
users to manage large file collections by moving files not needed on-line to
and from off-line tape storage. This system also maintains a historical
archive of files. See the section on the “SUMEX Perpetual Archive System”
below.
We have had a well structured organization for managing disk usage and
accounting on our 2060 system and we plan to duplicate some of these
features on the SUN-4 A UNIX accounting system will be put in place to
allow cost accounting and provide a quota enforcement capability on the
distributed file servers. UNIX has always been weak in the management of
large-scale file backup and with the advent of disks of near gigabyte size, it is
clear that a better organized approach is essential. In support of the long-
term goals of the distributed community, we have been reviewing more
advanced data storage methods, Optical disk systems are attractive but have

E. H. Shortliffe 52

5 P41 RR0078516 Progress - Core System R&D

not progressed as quickly as many had predicted. However, it seems likely
that this sort of equipment would be ideally suited to satisfying our
requirements for the archiving of files. Helical-scan magnetic tape
equipment might also serve this function well. However, in both cases the
absence of industry standards introduces some level of risk when planning to
use these types of data storage equipment. We plan to continue our
investigations of these technologies this coming year and to make a decision.
CAP, the public domain Columbia AppleTalk Package, is installed on both
servers. Within its facilities, the AppleTalldUNM File Service package
(AUFS) provid es icon-based file support on a UNIX server so that Macintosh
workstations can connect and see representations of their UNIX files in the
same format as with the file tools on the native Macintosh. File transfers are
invoked by moving icons around the Macintosh screen just as if the UNIX
server were an extension to the internal Mac desk top and disk. This system
operates either through Kinetics FastPath AppleTalkEthernet gateways or
through pure Ethernet connections.

(3.2) The SUMEX Pernetual Archive Svstem

Overview
The SUMEX Perpetual Archive System is an integrated set of system
software and operator procedures which allow individual SUMEX users to
create and manage perpetual magnetic tape archives of their files and
directories. Features include:
l A command which requests the system operator to move the contents of

specific files or directories to the magnetic tape archive. Note that the files
are first moved to an intermediate on-line repository with other files
awaiting archiving, so unless a user specifically requests that the contents
of a file be retained on-line, the disk space used by the archived files will be
immediately removed from their on-line disk quota.

. A command to interrogate an on-line catalog of archived files.
l A command to request the retrieval of archived files. In the case where a

file of the same name is entered into the archive more than once, the user
may specify a date such that the version of the file entered into the archive
just prior to that date will be retrieved.

Historical Perspective
The current implementation of the SUMEX Perpetual Archive System is
actually the third such implementation at SUMEX. The fust was based on
the BBN TENEX operating system, and utilized the BSYS magnetic tape
backup sofiware package written by Smokey Wallace at the SRI
Augmentation Research Center in 1974. This BSYS-based system was in
place from 1975 until 1984, when SUMEX was upgraded from a dual-
processor DEC KI-10 system to a DECSystem 2060 running the DEC TOPS-
20 operating system - a direct descendant of BBN TENEX. By that time,

53 E. H. Shortliffe

Progress - Core System R&D 5P41RROO785-16

DEC had integrated into TOPS-20 an archiving capability that used the
regular magnetic tape backup program, called DUMPER, also originally from
BBN. The DUMPER based system was place from 1984 to 1988, when
SUMEX was once again upgraded, this time to a more distributed system
based on a SUN-4/280 network and file server, running UNIX. The current
system utilizes a third-party magnetic tape backup so&ware package called
UBACKUP fi-om UniTech Software Inc., which in turn utilizes the standard
UNIX “tar” magnetic tape backup program.
As the SUMEX computing facility has changed operating systems, first from
TENEX to TOPS-20, and then from TOPS-20 to UNIX, facilities have always
been provided to retrieve files from the archives of the previous system -
hence the basis for calling this archive system perpetual.

Implementation:
Normally, when a UNIX account is created for a user, he is assigned a home
directory on a file system (for example /a/user) and is assigned an allocation
of disk space on that file system called the quota. At SUMEX, an additional
directory, called the user’s archive directory, is created on another file system,
in this case /var/archive/user. Once the archive directory is created, any files
moved into it will automatically be moved to the magnetic tape archives the
next time the operator runs the archive utility. The frequency of moving files
from the archive directories to tape is a function of the total amount of space
allocated to all archive directories, but is guaranteed to be at least once a
week (on Sundays), and not more than once a day.

Commands
The archive and retrieve co mmands have a similar format, and can be
thought of as commands that move files and/or directories between a user’s
home directory, say Miser, and archive directory, say /var/a.rchive/user.

archive E-d1 E-h1 pathname... [-as pathname
retrieve [-h] pathname... [-as pathname

Key features of the archive and retrieve commands include:
l Multiple arguments and options are allowed, in any order, and wild cards

will be expanded by the shell as usual.
l The -d switch specifies that files requested for archiving are to be deleted

from the system afterward.
l The -h switch specifies that the specified files and/or directories are to be

archived from or restored to the top level of the user’s archive directory.
For directories, the structure below the specified directory is preserved.

l The -as switch allows the user to specify a different name under which the
file or directory is to be archived or restored.

l Either absolute or relativepathnames may be supplied, i.e. it doesn’t
matter where the user is connected at the time of issuing the archive

E. H. Shortliffe 54

5 P41 RROO785-16 Progress - Core System R&D

command (although the examples below all assume the user is connected to
the home directory.

. In the case of directories, all subdirectories of that directory will be
recursively archived.

9 If a filename conflict occurs because the user requests a file by the same
name be archived before the previous request has been processed, archive
will warn the user and ask for confirmation.

l If a filename conflict occurs because the user requests a file by the same
name be retrieved, and a file by that name already exits, retrieve will warn
the user and ask for confirmation.

l When requesting the archive of files and/or directories outside the user’s
home directory, the standard UNIX protection scheme applies.

l Deletion of the archived files is left to the user.

Examples
In the following examples, it is assumed that the user is logged into his
directory (username) and is connected there:

Archive request
archive .login

archive mail/mail.sent

archive /a/usernamdmail/mail.sent

archive -h mail/mail.sent

Archived as
/var/archive/username/.login

/var/archivdusernameImail/mail.sent

/var/archive/username/mail/mail.sent

/var/archive/usernameImail.sent

(3.3) PrintinP Services
Laser printers have long ago become essential components of the work
environment of the SUMEX-AIM community with applications ranging from
scientific publications to hardcopy graphics output for ONCOCIN
chemotherapy protocol patient charts. We have done much systems work to
integrate laser printers into the SUMEX network environment so they would
be routinely accessible from hosts and workstations alike. This expertise has
been widely shared with other user groups in the AIM community and
beyond.
SUMEX operates 4 medium-speed (8-20 pages per minute) Imagen laser
printers, 6 low-speed (-3 ppm) Apple laser printers, 1 low-speed (-3 ppm)
Xerox laser printer, and 1 low-speed (-1 ppm) Apple color dot-matrix printer.
All of the Imagen printers incorporate an emulator for a line printer, a
Tektronix plotter, and a typesetter (using the Impress language).
Additionally, the two Imagen 3320 printers implement the PostScript
typesetter language (also implemented by the Apple LaserWriters) required

55 E. H. Shortliffe

Progress - Core System R&D 5 P41RROO785-16

for printing Macintosh documents. The Xerox printer (an 8046) interprets
the InterPress typesetter language. The Apple ImageWriter LQ is a low-cost
dot-matrix printer that the Macintosh’s Quickdraw printer driver is capable
of using for color printout.
IMAGEN host software is installed on both the SUMEX-AIM and KNIFE
servers, providing print spooling services for client workstations to any of the
several Imagen Printers in our computing environment. Since two of the
Imagen printers (3320’s) provide UltraScript support (a PostScript-like
document description language), we have connected the CAP and IMAGEN
software together such that Macintosh users can spool print jobs to the
IMAGEN printers. These printers appear in the Macintosh Chooser the same
as any local LaserWriter.
Since the NeXT computers print with the PostScript language, we didn’t
acquire any additional printers to support these workstations.
In total, the laser printers printed about half a million pages of output during
the year. Most of the printout was simple text (primarily electronic mail
listings) and documents formatted on the Macintosh - technical papers,
drawings, program listings, and screen dumps. As was our intention, only a
very small number of charts was printed on the ImageWriter LQ -
complicated charts and graphs that benefitted from the use of color to
distinguish otherwise indistinct graphic or data elements.

(4) Electronic Mail
Electronic mail continues as a primary means of communication for the
widely spread SUMEX-AIM community. As reported last year, the advent of
workstations has forced a significant rethinking of the mechanisms employed
to manage such mail in order to ensure reliable access, to make user
addressing understandable and manageable, and to facilitate keeping the
mail software distributed to workstations as simple, stable, and maintainable
as possible. We are following a strategy of having a shared mail server
machine which handles mail transactions with mail clients running on
individual user workstations. The mail server can be used from clients at
arbitrary locations, allowing users to read mail across campus, town, or
country.
The mail server acts as an interface among users, data storage, and other
mailers. Users employ a Mail Access Protocol (MAP) to retrieve messages,
access and change properties of messages, manage mailboxes, and send mail.
This protocol should be simple enough to implement on relatively inexpensive
machines so that mail can be easily read remotely. This is distinct from some
previous approaches since the mail access protocol is used for all message
manipulations, insulating the user client from all knowledge of how the mail
is actually stored on the server. This means the the mail server can utilize
whatever data storage and access methods are most efficient to organize the
mail on a particular server system.

E. H. Shortliffe 56

5 P41 RR00785-16 Progress - Core System R&D

Thus, a user sitting in front of his personal workstation can read mail from
any system on which he has an account and on which such a mail server is
running. This has several advantages to the usual scheme of TELNETing to
such a host and then reading the mail on the host, and receiving the text in a
byte stream over the network in use. Given a MAP designed for efficiently
accessing mail on such a network, the effective bandwidth for text transfer
can be maximized in two ways. First, when mail is accessed, a compact
representation of the users new mail can be sent for him to peruse and act
upon. This information is essentially an envelope containing addressees and
the subject of the message - the text of the message is sent only when the
user decides to read it. Efficient clients can read ahead and cache envelopes
while the user is perusing information and composing messages or when the
client is notified of the arrival of new mail. This maximizes the users’
perceived bandwidth since the protocol minimizes the delays between the
receipt of useful information. Secondly, the MAP server knows it is dealing
with mail and can maximize network bandwidth by maximi zing the data in
each packet it sends in reply to a MAP request. In our servers and clients we
utilize these techniques whenever possible.
The first prototype Interim Mail Access Protocol (IMAP) was designed with
this in mind. As noted in our previous report, the prototype IMAP server on
the DEC-20 provided the foundation for the IMAP protocol version 2
(IMAPB). During this reporting period the IMAP protocol description was
published as an ARPANET Internet working group Request for Commentsl,
making the IMAP specifications available to the general ARPANET
community. This has resulted in IMAP clients being developed elsewhere.
In fact, such a client has been implemented in Japan by NTT to run on their
ELIS lisp machine. The implementer regularly reads his mail in the U. S.
from Japan using this client.
We completed several tasks noted in last year’s report - the DEC-20 server
and Xerox Lisp client were upgraded to IMAP2; we implemented an IMAP
server for UNIX; and demonstrated a prototype client in Common Lisp for the
Texas Instruments Explorer. In addition to finishing this work in progress,
the main thrust of our effort this year was to write a mail client for the
Macintosh. The Macintosh client will be in alpha test by early summer 1989.
In addition, a UNIX workstation mail client, called MS, using the Columbia
MM CCMD package, has been implemented with an MM-like command
interface. The MS client was initially developed at SUMEX as a debugging
tool since it uses a command line user interface rather than one driven by a
mouse, menus and windows. MS also runs under MS/DOS on IBM PC’s, and
on NeXT machines. A NeXT client with a graphics interface is also well on
its way, and is being developed at the University of Washington.

1 Crispin, M. R. “Interactive Mail Access Protocol - Version 2.” Internet Working Group
Request for Comments No. 1064, Stanford University, July 1988.

57 E. H. Shortliffe

Progress - Core System R&D 5 P41 RROO785-16

(4.1) Macintosh client - MacMM
When we closely examined the design of a client, it became clear that a large
portion of the code was machine-independent, and should be written in such a
way that it could be ported to non-Macintosh systems. A client comprises a
mail reading module, mail composition module, IMAP protocol module,
SMTP (Simple Mail Transport Protocol) module, and a TCP-IP network
communication module. The first two of these require extensive user
interfaces. When we began this project, we decided to write it in C because of
its availability on most machines. At that time Apple was alpha-testing an
TCP-IP device driver, MacTCP, for the Macintosh, but a stream or socket
interface to this code to facilitate simultaneous use by multiple applications
was not available and had to be developed. It is important to note that
MacTCP supports multiple active applications using TCP-IP simultaneously,
and this is very important in our environment. Since the last three modules
mentioned above could be written and debugged under UNIX, we started the
project on two fronts.
A simple line editor reader/composer user-interface was written to run under
UNIX. This was initially considered to be “throw-away” code, but as
mentioned above, has evolved into three separate IMAP clients. The IMAP
and SMTP modules were then written in C to be machine independent, as
was a small interface module to the operating system-dependent TCP-IP
package. Thus for each new client, one was required to write the machine
dependent calls to the resident TCP-IP code, and the mail reader/composer
modules. At the same time we undertook a project to write a high level
stream interface to the Apple MacTCP TCP-IP driver that was in alpha
release.
These two projects proceeded in parallel and were finished at about the same
time. The UNIX-based client, MS, was then ported to the Macintosh in the
simple line editor mode, interfaced to the TCP-IP code, and was used to debug
the IMAP module. At this point, we began to write the graphics-oriented
mail reader user-interface.

14.2) Mail Reader User-Interface
We began designing the user interface (i.e. client) in mid-September 1988.
Although we knew what commands we would have to implement (from our
earlier work on the Xerox Lisp machine client), we had to maintain the “look
and feel” of the Macintosh for each of these co mmands. Additionally we
wanted to be able to run other applications concurrently with the mail system
and to bounce back and forth between these applications. This implied that
the data structures maintained by the client be kept to a minimum to avoid
running out of memory. We also had to get a working understanding of the
Macintosh system calls before we could start coding.
We began the actual coding in late October. The first task was to implement
a status window to inform the user of various events (such as notifying the

E. H. Shortliffe 58

5 P41 RR00785-16 Progress - Core System R&D

user that there are new messages) and also as a place to output debugging
information. This is an informational window only. We also had to
implement the basic menu system. Almost every application has at least
three menus (the Apple, File, and Edit menus) and the mail system is no
exception. The File menu contains global commands such as “Open Mailbox”
and “Compose Message”. The Edit menu allows the user to Copy, Cut (copy
and delete), and Paste (insert) selected text. Although the Edit menu is
primarily used in composing a message, users can also manipulate text in the
read and status windows.
The next step was to implement a scrollable message header browser window
which has a one-line descriptor (message number, date, sender, subject, and
size of message in characters) of each message in the user’s mailbox. This is
the heart of the mail system in that the user must select messages in this
window before anything can be done to these messages. For example, to read
a message the user must first select the message to be read. To select a
message the user just points the mouse to the message descriptor and clicks
it. There are two menus associated with the browser window; one that
operates on the selected messages and another that affects the entire
mailbox. The message menu allows the user to Read, Flag, Delete, etc. the
selected messages.
There is also a “Select” menu item that allows users to automatically select
messages that have certain properties. The user specifies these properties by
buttoning fields in a “dialog” box. The mailbox menu allows users to Expunge
deleted messages, Check for new messages, and Zoom selected messages
(replace the browser display with only those messages that the user has
selected). As of this writing, the Zoom and Print (to hardcopy messages)
commands have not been fully implemented.
Next we implemented Read windows and the associated Read menu. The
Read menu allows the user to operate on the current message in the Read
window. The user can simply continue on and read the next selected message
or perform some action on the current message. These actions include
Answer, Delete, Flag, etc.
The entire mail system is menu/window driven. By this we mean that the
active window determines which menus are enabled and the contents of the
active window determine which menu items (in the enabled menus) are
enabled. For example, if the message browser window is active, then only the
browser menus are enabled.
Additionally if there are no messages selected, then none of the items in the
message menu are enabled (with the exception of the Select command) since
these commands only operate on selected messages. This approach
eliminates confusion since the user can see at a glance which commands are
allowed and which are not. The initial release of Macintosh MM will only
allow one open mailbox at a time and one read window. The code was
designed to allow multiple mailboxes and read windows so this restriction
will be removed soon.

59 E. H. Shortliffe

Progress - Core System R&D 5 P41 RROO785-16

(4.3) The Mail Comnosition User Interface
In late March 1989, we began the mail composition user interface. This
interface is also mouse/menu driven and supports simultaneously opened
composition windows. Each such window has two independent panes; the top
pane is for the composition of the mail header information, and the bottom for
the text of the message itself. Each pane has independent scrolling and fonts.
The mail header can be checked for the correctness of RFC822 syntax at
anytime, and any addresses in error are flagged by both an error message
“alert” and cursor pointing to the portion of the text that contains the error.
The mail header can be freely edited, much like one would do in Emacs,
except that the field headers, e. g., “From: ‘I, are protected in the sense that
they cannot be deleted. Both panes support the usual Macintosh text editing
features such as cut, copy and paste. At the time of this publication, one can
compose and send messages, save and restore drafts of messages, and the
composition user-interface is essentially completed. Also, one can tailor the
mail composition environment to ones own needs.
For this customization to be accomplished, each Macintosh has a composition
initialization file. Using this file one can set a personal name, default font,
font size and font face, i. e., plain text, boldface or italics.. Also, a system
administrator can set the default SMTP server name list, and the host from
which the mail appears to be sent, and to whom the replies may be sent.
Several features need to be added and are currently in progress. Among
these are mail forwarding, message reply-to and answering, and the queuing
of unsent mail and background mailing of this same mail. It is expected that
this list may grow by user demand during its alpha and beta testing phases.

(4.4) Texas Instruments Exnlorer Client
The IMAP client for the TI Explorer system using Common Lisp mentioned
in last year’s report is still being developed by not as intensively as the
Macintosh client because of staff limitations, and the fact that the AIM
“market” for the Explorer system is significantly smaller. Nonetheless,
substantial progress has been made on this client by James Rice. The TI
Explorer IMAP Client is in a partial state of completion. The basic
functionality for sending, receiving and replying to messages is defined, as is
support for BBoards. The major areas where more work is needed to make it
usable are in the command handler; significant modification of the original
prototype implementation is needed, it still has a number of bugs, and the
interface with the Zmacs text editor works but will probably need
modification. We estimate that an additional month of work will be required
before the system is ready for alpha-test.

(4.5) DEC-20 IMAP Server
The current version of the DEC-20 server is a complete and robust
implementation of IMAP and we do not anticipate any further work on it.

E. H. Shortliffe 60

5 P41 RR00785-16 Progress - Core System R&D

14.6) UNIX IMAP Server
UNIX is becoming more and more widely adopted in the AIM community and
in our distributed mail system we will rely heavily on UNIX engines as
servers. As summarized in last year’s report, we have written a UNIX
lMAP2 Server (UIMS) for remote mail access. UIMS handles the full
complement of IMAP commands, and has been vigorously tested for the past
year.
This past year, we benchmarked UIMS against Columbia MMC on a SUN-
31180 running SUN OS 4.0.1 to compare speeds for text searches of
reasonably large mail files. This was done by modifying the MMC code to
calibrate searches. The UIMS already has calibration incorporated into its
code. Note that this compares wall clock search time between UIMS and
MMC, and in both cases file I/O is factored out. It is interesting to note that
making these measurements for UIMS was tricky. This is because, unlike
MMC which reads the entire mail file at initialization, UIMS is very careful
to minimize its working set size in order to reduce paging overhead and
UNIX scheduler penalties for programs with large working sets.
UIMS only keeps messages in memory if the search succeeds, or if the
message number is within 40 of the number of messages in the mail file, or if
the user has “shown interest” in the message prior to the search. So, two
searches were done in UMIS. The first was for the string “a” which coerced
all of the data into memory, and the second was for the string
“ImNotInAnyMessage%%%“. Thus, the second search is independent of file
I/O.
The results of these measurements for various mail file sizes are summarized
in the following table:

Mail File Size MMC Search UIMS Search
Time Time

2.5 megabytes 44 sets 11 sets

1.2 megabytes 16 sets 2 sets

0.5 megabytes 4 sets 1 sets

Table comparing EMail text search times for MMC and UNIX IMAP

Note that 0.5 MB is approximately the typical mail file size on SUMEX-AIM,
ignoring large users and the very large BBoard files. The data illustrate the
efficiency that can be gained by accessing mail from a special purpose server
which is optimized for access performance, independent of the user interface
code which executes separately on the user’s client workstation.

61 E. H. Shortliffe

Progress - Core System R&D 5P41RROO785-16

The principal development effort on the UIMS this past reporting period was
the addition of code to allow flexible access to read-only bulletin boards. In
addition, we fixed a number of bugs reported by client developers.
We believe that accessing mail in this client/server model will prove to be
more efficient than the usual mode of using mail reading programs on the
mail server itself, or using network tile system protocols to remotely access
mail (i.e., down-load the entire mail file to the workstation In the former
case, the operating system overhead for running a job under UNIX has much
more impact on system resources, than does an UIMS server process. The
latter has no shell process for executing commands, and was written carefully
to minimize system resource usage. The example of the search comparison
above clearly points out this difference. Secondly, network file system
protocols, like SUN Microsystem’s NFS, show a drastic decrease in
performance as the distance between the server and client host increases.
This is even true on a local area network, where a client and host are
separated by one or more gateways. This is not evident with our mail
client/server model because IMAP was designed to be transactional and
minimize the impact of a server and client being on separate subnets of a
local area network, or even being separated widely on the Internet.

l4.7) Transition Strategv and Plan
The transition strategy plan described in last year’s report is well underway.
The AIM community currently reads mail on the SUMEX-AIM SUN-4 using
the Columbia University MMC system which closely emulates the earlier
TOPS-20 MM interface. UIMS understands the MMC mail storage format
and we can access the same mail on one of the several personal workstations
mentioned above. By the end of this summer, we expect most users will be
reading their mail using an IMAP client on Mac II or Explorer workstations
during the day, and in the evening, they will use a TELNET connection to
SUMEX-AIM from a terminal emulator to process mail with MMC.
It is again important to mention that Columbia University distributes MM-C
with the statement “Permission is granted to any individual or institution to
use, copy, or redistribute this software so long as it is not sold for profit, and
provided this copyright notice is retained”. This makes MM-C an ideal mail
reading program for the SUMEX-AIM community since our move away from
the DEC-20 toward a distributed environment, since this interim mail-related
software can be made widely available to the national community.

(5) Lisp Systems

15.1) Standards
In a heterogeneous computing environment, such as AI research inevitably
involves, the issue of cross-system compatibility is a central one. Users of
various machines want to be able to share software, as well as be able to use
various machines with a minimum of overhead in learning the operating

E. H. Shortliffe 62

5 P41 RROO785-16 Progress - Core System R&D

procedures and programming languages of new systems. Thus, it is crucial to
specify and propagate powerful, flexible standards for various aspects of the
computing environment so that it is possible to transfer both skills and
information among machines.
In order to improve the inter-machine compatibility of our software, we have
been encouraging all users to use the Common Lisp programming languagel,
as well as pressing vendors to provide more complete and efficient
implementations of this language. We have already served as beta test sites
for Xerox, Texas Instruments, and Lucid Common Lisp implementations.
The Common Lisp language, however, is only a subset of the software needed
for our research. Research projects need higher-level powerful facilities, such
as an object-oriented programming system, sophisticated debugging and error
handling tools, portable window systems, and better graphics interface
development tools. Therefore we have been supporting and following the
development of evolving standards such as the Common Lisp Object System
(CLOS), Common Lisp X Window system (CIX), and proposals for higher
level User Environments (e.g., CLUE) via membership in the electronic
discussion groups and specific technical contributions.

.
6.2) Lm Syste m Performance
One of the key issues in selecting the systems for our distributed computing
environment was the performance of Common Lisp. In order to assist us in
evaluating the performance of Lisp systems, we undertook an informal
survey of Common Lisp environments using two KSL AI software packages,
SOAR and BBl. The results have been compiled into a KSL Technical Report
presented in Appendix B. In this survey we focused on execution speed for
simulated runs of the test programs and for compilation of the test programs
as measures of performance. However, we emphasize that execution speed
benchmarks are only one aspect of the system performance evaluation,
especially for Lisp systems. Other crucial issues like programmi ng and usage
environments, compatibility with other systems, ability to handle “large”
problems, and cost must also be considered.
Both SOAR and BBl were chosen because they are implemented in pure
Common Lisp, making them extremely portable. SOAR is a heuristic search
based general problem solving architecture developed by Paul Rosenbloom et
al2 and BBl is a blackboard problem solving architecture developed by
Barbara Hayes-Roth3. Neither of these systems is an intensive user of

1 Steele, G. L., Jr. Common Lisp - The Language. Digital Press, Burlington, MA, 1984.
2 Laird, J. E., Newell, A., and Rosenbloom, P. S. “SOAR: An Architecture for General

Intelligence.” AZ Journal, 33(1): l-64, 1987.
3 Hayes-Roth, B. “A Blackboard Architecture for Control.” AZ Journal, 26:251-321,1985.

63 E. H. Shortliffe

Progress - Core System R&D 5 P41 RR00785-16

numeric computation. They were initially developed in environments other
than those tested and no attempt was made to optimize their performance for
any of these tests.
The workstation systems to be tested were chosen based on their availability
as well as projected applicability in AIM community environments. Since we
were interested in “real world” results, we ran the tests on each machine in
what seemed to be its standard operating mode. The machines tested
include:

SUN 3/260 with Lucid Lisp1
SUN 3/60 with Lucid Lisp
Compaq 386 with Lucid Lisp
Compaq 386 portable with Lucid Lisp
SUN 4/260 with Lucid Lisp
SUN 4/280 with Lucid Lisp
DEC MicroVax II with VaxLisp
DEC MicroVax III with VaxLisp
SUN 3/75 with Franz Extended Common Lisp
Texas Instruments Explorer I
Texas Instruments Explorer II
Texas Instruments Explorer II Plus
SUN 4/280 with Franz Allegro Common Lisp
Hewlett Packard 9000/350
SUN 3/75 with Kyoto Common Lisp
SUN 3/75 with Lucid Lisp
Apple Macintosh II with Allegro Common Lisp
Symbolics MacIvory
Texas Instruments microExplorer
IBM RT/APC with Lucid Lisp
Symbolics 3645
Xerox 1186

A large variation was observed between the ranking of systems when running
the SOAR test and when running the BBl test. This leads us to conclude
that while these experimental results, and ones like them, can be used to

Hayes-Roth, B., and Hewett, M. BBl: An Implementation of the Blackboard Control
Architecture. In Blackboard Systems, Engelmore, and Morgan editor, Pages 297-313.
Addison-Wesley, Palo Alto, CA, 1988.

E. H. Shortliffe 64

5 P41 RR0078516 Progress - Core System R&D

class machines together roughly, it is impossible to use such a set of
benchmarks to decide in advance how a given application will perform on a
given system. There is no substitute for actually running the program on the
systems in question. However, on the basis of these data, the systems tested
may be ranked as follows:
- Very Fast (I 0.50 anr - averaged normalized run time): TI Explorer II

Plus (Exp2+), TI Explorer II (Exp2), and SUN 4 with Lucid Lisp (4/280 and
4/260)

- Fast (> 0.50 anr, 5 1.00 am-): TI microExplorer (mX), Compaq 386 (386),
SUN 4 with Franz Lisp (F-4/280), Compaq 386 portable (386T), SUN 3/260
(3/260), IMB RT/APC (RT), and SUN 3/60

- Medium (> 1.00 anr, I 1.50 am-): Symbolics 3645 (Sym), SUN 3/75 with
Lucid Lisp (L-3/75), HP 9000/350 (HP), TI Explorer I (Expl), and DEC
MicroVax III (DEC-III)

- Slow (> 1.50 am, I2.50 am-): Symbolics MacIvory (Maci), SUN 3/75 with
Kyoto Common Lisp (K-3/75), and SUN 3/75 with old Franz Extended
Common Lisp (E-3/75)

- Very Slow (> 2.50 am-): Apple Macintosh II with Allegro Lisp (Mac2), DEC
MicroVax II (DEC-II), and Xerox 1186 (XCL),

The data were normalized by dividing individual results by the average of the
results for all the tested implementations.
As new Common Lisp implementations become available to us we plan to
revise the report to include measurements of these systems. We are
currently integrating measurements for Symbolics MacIvory running Genera
7.4 and Symbolics 3650 running Genera 7.2, We are working on getting
measurements for Symbolics XL400, DEC MIPS, and Cray 2, as well as other
mainframe systems.

15.3) Lisp ProsramminP Environments
Even though performance gaps between microprogrammed Lisp systems and
stock workstation implementations are narrowing, there still remains a
significant difference in the quality of the development environments. The
power of the development tools and environment is what has been the
primary strength of Lisp machines, allowing rapid design, implementation,
and debugging of complex programs. We believe the key to good development
tools is integration, both in terms of consistency of interface, and in the
ability to move seamlessly from tool to tool, carrying along appropriate data
and state information. These qualities must be manifest in any AIM research
computing system.
Over the years, KSL and AIM community AI systems have been implemented
predominantly in the InterLisp, MACLisp, ZetaLisp, and more recently,
Common Lisp dialects. Beginning in the early 1980’s, our work moved from
mainframe Lisp environments to workstation environments for many

65 E. H. Shortliffe

Progress - Core System R&D 5 P41 RROO785-16

reasons, principally involving powerful tools for system development and
debugging and graphical interfaces. Commercial versions of these tools, that
evolved over many years in the Xerox D-Machine, Symbolics 36xx, LMI, and
TI Explorer systems, have become an indispensable part of our work
environment. Newer Lisp systems for workstations not specifically developed
for Lisp have lacked many important features of these environments.
Thus, in light of the runtime performance advances of stock workstations, we
have attempted to summarize the key features of the Lisp machine
environments that would be needed in stock machine implementations in
order to make them attractive in a development setting (the first draft of this
specification was included in last year’s report). Unfortunately we have been
unable to refine this draft specification over the past year due to lack of
resources. We hope to better address the issue of high-quality development
environments on a variety of platforms in the coming year.

(6) Workstation System Environments

Hardware and Software Environments
The installation of the Macintosh II workstations and ancillary networks,
printers, and software went mostly according to plan, and most have been in
productive use for over a year now.
The inexpensive Rodime winchester disks have proven quite reliable so far.
The few units that have failed were replaced under warranty. A greater
number of Moniterm displays exhibited a tendency to fail from overheating,
with annoying but not problematic frequency.
We are using Microsoft’s Word for word processing, PowerPoint for
presentations, Excel for accounting, and Blue Sky’s TEXtures and LaTEX for
large specialty documents. After long deliberation, we have chosen Deneba’s
Canvas for technical illustration and Niles & Associates’ EndNote for
bibliography preparation. We have also been able to make good use of
inexpensive file system repair utilities like Central Point’s MacTooZs,
Symantec’s SUM and Alsoft’s Disk Express. We bought a copy of
Mathematics for the Mac II to tide users over until the faster fi-ee version
becomes available for the NeXT machine.
We cooperated with some other laboratories on campus to purchase a site
license for Coral’s Allegro Common Lisp for the Macintosh. Although
generally liked by the students who did small projects in this environment,
this implementation was not employed in any big projects this year. To test
Allegro Common Lisp’s capability as a systems language we implemented a
small utility that coalesces multiple lines of a TOPS-20 text file into unified
paragraphs suitable for Microsoft Word’s consumption. The overhead for
using such a utility was relatively high - about the same as HyperCard’s -
but not unacceptable.

E. H. Shortliffe 66

5 P41 RROO785-16 Progress - Core System R&D

After we purchased the site licence (as did Carnegie Mellon and MIT), Apple
Computer’s Advanced Technology Group purchased the rights to Allegro
Common Lisp and plans to continue to improve it and use it in their own
research and distribute the improved version through APDA. We believe that
this development will work to our advantage in the long term, making Apple
Common Lisp a good, inexpensive vehicle for small AI applications.
We bought two copies of Connectix’s VirtuaZ software and Motorola PMMU
hardware to experiment with virtual memory on the Macintosh. The product
is mostly successful, but currently has problems with MacTCP and Allegro
Common Lisp. Although basically successful, we have decided to defer
purchase of more virtual memory hardware pending support by Apple and
because of the cost.

MacTCP Stream Interface Package
Beginning last August, we alpha and beta-tested MacTCP - Apple’s
implementation of the lower levels of the Department of Defense’s TCP/IP
networking protocol suite. (The product manager for MacTCP is a former
SUMEX employee now at Apple).
Before MacTCP, no TCP/IP-based applications for the Macintosh allowed
simultaneous access to the network interface by other applications. Thus,
one was limited to running a single network application at a time.

In writing Macintosh programs, accessing a driver is very complex and
requires subtle calls to Mac OS primitives. For example, it requires 150 lines
of code to open the MacTCP driver, create a low level I/O stream, and then
open this I/O stream for reading and writing - and much of this code just
defines “the bits” for a parameter block which is passed to the driver via a
system queue. To eliminate these difficulties we wrote a high level stream
interface to MacTCP - tcpio. tcpio permits one to easily access a remote host
with five simple function calls: tcpopen, tcplisten, tcpread, tcpwrite, and
tcpclose .

Tcpopen opens an active connection to a remote host, while tcplisten waits
passively for connections from remote hosts. This latter allows one to run
daemons in the background, e.g., a finger daemon which reports the status of
the current user (if any) of a Macintosh. Each returns a TCP stream handle
which is used in subsequent calls to tcpio functions.

Tcpread and tcpwrite read and write data on the open tcpstream, and tcpcZose
closes the connection. If one wishes to use asynchronous I/O-i.e., read and
write without blocking-then three additional functions are provided:
tcplistencheck, tcpreadcheck, and tcpwritecheck.

One calls tcplistencheck to see if a remote request for a passive connection has
been made; tcpreadcheck to see if a read has been completed (and if so, how
many bytes were read); and tcpwritecheck to check if a write has completed.

67 E. H. Shortliffe

Progress - Core System R&D 5 P41 RR0078516

All of these functions return complete error messages in the case of an OS or
network failure of some sort.
The marriage of tcpio and MacTCP provides excellent bandwidth on a local
area network and will allow a single application to open up to sixty-four
simultaneous TCP connections. One can read/write large blocks of data in
excess of 400 kilobits/sec between a Macintosh and SUN-3 with both hosts on
the Ethernet, and in excess of 150 kilobits/sec between the same two hosts
when the Macintosh is on a LocalTalk network. Given that the bandwidth of
LocalTalk is 230.4 kilobits/sec and that we use a Kinetics bridge between the
LocalTalk and Ethernet, this performance is remarkable.

Domain Name Service
This spring MacTCP was in beta release and domain name service was added
to the driver package. For reasons similar to those mentioned above, we
wrote a high-level interface to this package. It allows one to do host name
and address lookups, and uses a disk resident host file for familiar and
frequently looked up names and addresses.
This package returns fully qualified domain names with each query, so, for
example, if one looked up the name SUMEX-AIM, not only would one receive
its network address-36.44.0.6-hut also “SUMEX-AIM.Stanford.EDU,” in
the reply. The converse is true for address probes. If a host has more than
one address associated with its name, then all addresses are returned in the
reply to a name lookup.

MacTCP - tcpio Applications
The above two packages are prerequisites for the writing of network
applications on the Macintosh and are at the heart of Ma&M, the mail
reader/composer we are developing for this system.
An early first use of this package was to allow the Guardian project to
distribute its analysis and results between Macintosh’s and an Explorer. The
Guardian BBl program ran on the latter system, and sent data to
Macintosh’s for further analysis and graphics display.
We are also interested in doing remote database queries from the Macintosh
to our SUN file servers. We have provided our tcpio package to Sybase so
that they can provide TCP/IP connectivity from their Macintosh client to the
Sybase database server that runs on SINS.
Our tcpio package is in the public domain and will ultimately be distributed
with MacTCP by Apple along with other public domain software that has
been developed internally by Apple.

(6.2) Texas Instruments Exnlorers
The Texas Instruments Explorers have enjoyed an increasing popularity as
more projects have developed a need for the combination of execution speed,
full Common Lisp, and sophisticated development facilities offered by the

E. H. Shortliffe 68

5 P41 RR00785-16 Progress - Core System R&D

Explorer. The .&SL use of Explorers has expanded to include 6 Explorer II’s,
28 Explorer Is, and 16 microExplorers, for a total of 50 Explorer family
systems. Our efforts have been directed at improving the environment of the
Explorer by developing software, organizing user interest activities, and
advising Texas Instruments.
Previous experience has shown that the greatest source of advancement for a
particular computing environment is the user community. They are the most
in touch with the deficiencies of the system, and thus uniquely positioned to
address them, as well as to utilize the strengths of the system. The product
developers of the system are frequently too involved in the lower levels of
detail to produce general, effective solutions to problems, as well as being
hampered by limited manpower resources. However, a significant amount of
time and effort is required to organize this effort. This task has traditionally
fallen to a user-run organization, such as DECUS or USENM.
We have spearheaded an effort to organize an international users’ group for
the Explorer. The slightly misleading name for the group is NEXUS,
standing for National Explorer Users’ Group. In the past year the NEXUS
steering committee has drafted a mission statement for the group, held a
general meeting in conjunction with the AAAI conference in St. Paul, moved
towards a generally accessible library of user-contributed software,
negotiated a relationship with TI-MIX, the general Texas Instruments users
group, and maintained an electronic mailing list of several hundred people
which has distributed over 400 messages among Explorer users world-wide.
We have maintained and extended the software tools produced in the KSL
and made available to the national community. The tools now include:

36XX-EXPLORER
BACKUP-TO-FILE-SYSTEM
BATCH-PROCESSOR
DEVELOPMENT-TOOL-CONSISTENCY-ENHANCEMENTS
DVI-PREVIEWER
EXPLORER-36XX
GENERAL-INSPECTOR
GRAPHER
GRAPHICAL-VALUE-MONITORS
IMAGEN-PRINTER-VIA-TCP
INSPECTOR-ENHANCEMENTS
K.&PATCHES
MAP-OVER-FILES
MAP-OVER-FILES
PATHNAME-EXTENSIONS

69 E. H. Shortliffe

Progress - Core System R&D 5 P41 RROO785-16

SEARCH-AND-REPLACE
SEARCH-AND-REPLACE
SINGLE-WINDOW-VT100
SOFT-KEYS
SOURCE-CODE-DEBUGGER
SPELLING-CHECKER
STRUCTURE-ENHANCEMENTS
UTILITIES
WEST-COAST-WINDOWS
WINDOW-ACCELERATORS
WINDOW-DEBUGGER-ENHANCEMENTS
WINDOW-ICONS
WINDOW-SYSTEM-ADDITIONS
ZMACS-ENHANCEMENTS

Many of the tools have been enhanced or newly written this year.
GENERAL-INSPECTOR The most significant of many improvements to

this tool is the introduction of a “perspectives”
mechanism, allowing the user to view a single
data type (e.g. a list) as a representation for
many different types of abstract data structures.
For instance a list might be a mapping between
tags and values implemented by a list of tag,
value pairs (a Plist) or implemented by a list of
sublists, the first element of each sublist being a
tag and the second being the value (an Alist).
Both example implementations have value in
certain contexts, but often the user viewing such
a data structure only wants to see what tags
there are and what their values are. The
perspective mechanism provides this. Also for
example, a symbol might represent a named
structure, a flavor, a CLOS class, a function, a
type, a package, etc., and a perspective tailored
to each of these is provided, as well as ways for
users to conveniently add their own
perspectives. This tool has also been extended
to encompass the Common Lisp Object System
and Portable Common Loops (using the
perspectives mechanism).

E. H. Shortliffe 70

5P41RR00785-16 Progress - Core System R&D

WINDOW-DEBUGGER-ENHANCEMENTS This tool has been extended to
use the General Inspector.

ZMACS-ENHANCEMENTS New features in this tool include: commands for
formatting and pretty printing text and
programs; commands for manipulating software
systems defined with DEFSYSTEM; and more
commands for dealing with Tag tables.

Of course, all of these will be provided to the user’s library, and many of them
have already been given to other sites, including IntelliCorp, Berkeley, ISI,
University of Maryland, and Ohio State.
Third party software is less utilized, but we stay abreast of the latest releases
of the expert system shell KEE. We have installed a DVI previewing system
from MIT allowing TeX and LaTeX output to be viewed on the Explorer
screen. We have available several other imported tools such as a Common
Lisp LOOP package and we are experimenting with a Domain Name System
Resolver.
In addition to producing and maintaining these software tools, we attempt to
provide extensive testing and evaluation of Explorer hardware and software
products in a sophisticated university research environment in order that
these products work more effectively when they are distributed to the
national community. This testing is critical to the development of the
computing environment since the combination of concentrated in-house
expertise and close links to the product developers allows a turn-around on
problem fures unavailable in the broader scope.
This year we have participated in testing TI’s high-end product, the Explorer
II-Plus, System Software Releases 4.0,4.1,4.1.1,5.0, and 5.0.1, and the
Common Lisp Object System. Many of these releases were focused on the
relatively new microExplorer add-in co-processor for the Apple Macintosh II.
Many of the suggestions we have made to TI in the course of using this
machine have been integrated into the system. It is our hope that this work
will result in high-performance, low-cost sophisticated Lisp availability,
allowing greater dissemination of AI software to the national community.
TI’s planned release date for their implementation of the emerging Common
Lisp Object System (CLOS) standard has been moved forward by several
months due in part to our urgings. Implementation of this standard will
allow developers to write sophisticated, portable programs in an objected
oriented framework.
In addition to specific testing and evaluation, we are constantly finding,
tracking, fixing, and reporting software bugs. This year we submitted
twenty-eight new bug reports on Explorer system software, almost all of
which had fures included. All of these fures have been made available to the
national community in a patch file.

71 E. H. Shortliffe

Progress - Core System R&D 5 P41 RROO785-16

As well as working on these specific problems, we have had many meetings
with Texas Instruments representatives wherein we have attempted to
present the needs of the national community for short- and long-term AI
workstation products, covering issues including the desirability of specialized
hardware, address space, programming environment versus execution speed,
and the ability to utilize the AI workstation’s power for routine tasks.
Of course, there is also a large number of day-to-day activities needed to keep
the computing environment pleasant, including resource management (e.g.,
disk space allocation, printer management), assistance with file backup and
magnetic tape usage, and introducing new users to the system. We have
produced documents targeted at complete novice users, users of InterLisp-D
machines, and users of Symbolics machines in order to facilitate user
education. These documents have been used as examples at various places in
the national community.
For the coming year we plan to continue development and maintenance of the
software tools, perhaps adding facilities such as a DARPA Internet Domain
Resolver, better IP access control, CIX and CLUE packages, better
documentation, better software management facilities, a Zmacs novice mode,
and an Explorer version of the TALK program, as well as aiding the growth of
the users’ group. We already have under development an Explorer IhMP
mail client, UNIX LPD-based print spooling, and automatic file backup.

16.3) SUN Workstations
Due to the high performance relative to purchase cost, SUN workstations
have drawn strong interest as Lisp engines. For the past two years we have
had three SUN 3/75 workstations in experimental use in the KSL. Because
these were purchased for LISP work, we have added a 24 megabyte memory
board (from Parity Systems Inc) to each of these. Also added were 70
megabyte SCSI disks. The systems have been set up to swap the large
virtual memory to the local SCSI disk, rather than over the Ethernet to the
server.
One of the systems is used for system development, a second has been used in
the “Very Large Reusable Knowledge Base” project and a speech recognition
box has been connected to another of the clients. An interface between the
latter system and a Xerox InterLisp workstation running ONCOCIN was
developed developed to study the use of speech input for medical information.
An evaluation of SUN workstations was made in terms of their suitability as
a platform for a general physician’s workstation which would support data
management, analysis and display, and consultative software. For now, the
SUN/UNIX environment was judged not to be competitive, in terms of cost or
user interface technology, with other workstations environments (e.g., the
Mac II) for this purpose.
The vendor plans for LISP support on SUN workstations has been in a state
of flux this past year. Despite the decision to stay with Lucid as a supplier of
the underlying Lisp implementation, SUN has not made great progress

E. H. Shortliffe 72

5 P41 RR00785-16 Progress - Core System R&D

towards providing a programmi ng environment competitive with older Lisp
machine systems. However, SUN is continuing to work in this area and has
the potential to close the gap, and thus deserves watching.

(6.4) NeXT Workstations
This year we obtained four NeXT workstations for evaluation and
development, funded half by the SUMEX-AIM grant and half by other
sponsored research sources in the KSL. We started following the NeXT
closely in the middle of last year with several of the KSL planners attending
preannouncement, non-disclosure sessions about the machine. Several
laboratory members attended the official, day long NeXT announcement and
three of the SUMEX staff attended the following “NeXT Day” technical
session. In early January, one of the staff attended the four-day NeXT
Developer’s Course and we received our first two machines. One of these
machines was allocated for system integration purposes to a staff member
and the other was made available for evaluation by laboratory members. A
few weeks later our second pair of machines arrived, one of which was
allocated to an Medical Computer Science application (OPAL) and the other
installed in our Welch Road facility for use in the core AI research work of the
Heuristic Programnu ‘ng Project. All machines were configured with 8 MB of
memory and 330 MB SCSI Winchester disk drives, along with the standard
NeXT 256 MB optical disk drive.
To accommodate the NeXT machines, we installed new thin Ethernet in
parallel to our existing thick Ethernet in two of our locations. We then (with
the assistance of technical notes from the AIR/SPUDS organization at
Stanford) configured the networking software to be compatible with our
environment. Rather than introduce four new file systems onto our network
that would require backup and maintenance, we used the internal disks for
the system software and swapping, but user directories were mounted via
NFS (Network File System) from our existing SUN-3 file server, KNIFE. For
authentication and host name resolution, we made the NeXT workstations
“Yellow Pages” clients of our SUN server. This eliminated the need for
separate account creation procedures for the new machines and made it
possible for any user to use any of the NeXT’s interchangeably. This did
introduce some unique problems of designing user UNIX initialization files
(.login and .cshrc) in such a way that they were both compatible with NeXT
and SUN logins. Once the networking was in place we then got remote
printing working using both our generic PostScript printers and our Apple
LaserWriters, by means of our SUN-4 server as a spooling host.
To help users get started on the machine, we set up a local mailing list, “KSL-
NeXT”, to distribute information, which now has nearly fifty readers, several
of whom are outside the KSL. We obtained access to the nation-wide NeXT-
News mailing list and a campus-wide mailing list, NeXT-Info. We made
available copies of every technical document that related to the machine,
including “Objective-C” and “PostScript”. We received permission for several
of our programmers to audit a class conducted on campus by NeXT about

73 E. H. Shortliffe

Progress - Core System R&D 5 P41 RROO785-16

programming the machine. To further assist in learning to program the
machines, we collected numerous non-trivial example programs with sources
from public archives on the Internet and from the NeXT Developer’s Course
and made these available on-line.
Shortly after gaining some experience with the machines, we set up a
meeting with Cindy Larson (sales representative) and David Bessemer
(support engineer) from NeXT to discuss our status, progress, problems, and
needs in using the NeXT machines. NeXT requested this meeting to learn
about what we were doing with the machines and what was needed from
them in the way of additional support and changes in future system releases.
This meeting was quite successful and we have strongly influenced them
regarding the need to fully integrate Common Lisp into their environment,
particularly in the Interface Builder and Application Kit, and to make
extensive use of the Common Lisp object standard in doing so. Also, we have
sent in several dozen bug reports regarding the 0.8 release of their software.
We are anticipating receiving the 0.9 system software release sometime this
month.
We developed a pair of programs to control the display brightness and sound
volume on the machines. These were both short-comings of the initial
software release that we knew would be fixed in a later release but they were
sufficiently annoying as to warrant some programmi ‘ng effort. These were
well-received by the national NeXT community which was suffering with the
same problems. Additionally, we developed a pair of conversion filters to
facilitate moving sound files between the NeXT and the Macintosh. This
allows us to use the built-in sound facilities of the NeXT to generate sound
files for use in Macintosh applications, like HyperCard stacks. We wrote a
bitmap conversion program to allow us to move bitmaps corn our Xerox
environment to the NeXT. Additionally, we are importing software from
other universities, including both NeXT-specific applications as well as
general Unix software such as CSound from MIT. We brought up the
terminal-based, MM-like MS client for Unix, made available by Mark
Crispin, which uses the IMAP protocol and software developed here. We
anticipate Crispin making available a graphic mouse-based version built
using the NeXT’s Interface Builder, around the same time as we release our
initial Macintosh version. We also installed a pre-release of the CMU
portable speech library which included two speech recognition demonstration
programs, Sphinx and VSC (voice spreadsheet). These are discussed in the
Speech Project part of the report.
The OPAL project has made significant progress with the machine as the
NeXT object-based interface construction kit fits naturally with that project’s
need to generate sophisticated interfaces programmatically. The machine
has potential for use in our remote graphics and distributed computation
work due to its Display PostScript server, which is accessible via Ethernet
using TCP, and its Mach ports for remote procedure execution. This potential
should start to become a reality with the next release of system software.

E. H. Shortliffe 74

5 P41 RR00785-16 Progress - Core System R&D

The machines have had an unexpected positive impact on the Speech project
due to both their ability to run the CMU speech software as well as provide
faster cycles than the SUN 3 currently being used to process speech using the
SSI software library.
We had two early hardware failures, one of which was minor and both of
which were repaired under warranty; all four machines are no longer under
warranty. We have no plans to obtain more NeXT machines but their
numbers continue to increase campus-wide and in the AIM community.

(6.5) Xerox D-Machines
This year saw the introduction of a new release of the Xerox Lisp
environment, a new hardware platform, a new release of server software, and
a new company. The use of Xerox workstations in the KSL continued to
decrease though it has not yet disappeared completely. Most of the SUMEX-
AIM systems software projects on these machines consisted of aids to transfer
to other platforms and small prototype systems. As part of our removal of
support for the equipment, we turned over to Ohio State University
responsibility for the national INFO-1100 Xerox Lisp interest Internet
mailing list which we have been operating since the machines first appeared
seven years ago. We also discontinued the Internet software repository for
Lisp programs on SUMEX-AIM,in conjunction with the SUN 4 transition,
and this was picked up jointly by Xerox and Ohio State.
As mentioned very briefly in the previous annual report, we were involved
early in the evaluation and testing of a new hardware platform, known as
Maiko, which consisted of a Xerox Lisp byte code emulator, implemented on a
SUN workstation in ‘C’ with some optimization of the machine code. The
byte code emulator provided binary compatibility with the Xerox hardware
thus making porting of software trivial. We used the ONCOCIN system to
evaluate the new platform. Using the full range of SUN 3 and SUN 4
processors we saw performance ranging from half of the Xerox 1186 to several
times faster than the Xerox 1132. Although technically quite impressive, in
general we did not consider this as a means to prolong our use of the Xerox
Lisp environment, due to the cost of the SUN hardware necessary to get the
performance we would require. Maiko was seriously evaluated as a possible
short term Gx for some performance and packaging problems in both the
clinic ONCOCIN system and the speech project, though later rejected. Xerox
also saw this as a short term solution to the problem of moving onto more
conventional hardware.
To facilitate the new platform, Xerox provided a new software release,
Medley, for which we were involved in two separate beta-tests. We were one
of two sites involved in the initial beta-test and this consisted of the usual
testing and fling of existing software and reporting of problems. For the
most part, the new release was a better version of their previous combined
InterLisp and Common Lisp release, Lyric, with just a few feature additions.
This release provided increased support and faster throughput for TCP/IP-

75 E. H. Shortliffe

